RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December) 2014 Mid-Semester Examination, September 2014

Date : 18/09/2014	MATHEMATICS (General)	
Time : 12 noon – 1 pm	Paper : I	Full Marks : 25
Group – A		

Answer **any two** questions :

- 1. Show that the product of all the values of $(1+i\sqrt{3})^{\frac{3}{4}}$.
- 2. State De Moivre's theorem. Find the principal value of $(1+i)^i$.
- 3. State the Rolle's theorem. Use it to find the range of values of K for which the equation $x^4 14x^2 + 24x K = 0$ has four real unequal roots. [1+3]

Group - B

Answer any two questions :

- 4. State De Morgan's Law. Verify it for the sets A & B, where $A = \{1,5,6\}, B = \{5,6,7\}$ and $U = \{1,2,3,4,5,6,7\}$ as universal set. [1+3]
- 5. a) If f: R→R be defined by f(x) = x² and g: R→R by g(x) = e^x, find gof and fog. [1]
 b) If f: A→B and g: B→C be both injective mappings then prove that gof: A→C is injective. [3]
- 6. Prove that in a group $(G,*), (a*b)^{-1} = b^{-1}*a^{-1} \forall a, b \in G$. Define subgroup of a group. [3+1]

<u>Group – C</u>

7. Answer **any one** question :

a) If $u = \sin^{-1} \sqrt{\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}}}$ then, using Euler's theorem prove that : i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan u$ ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{12} \left[\frac{13}{12} + \frac{\tan^2 u}{12} \right]$ [2+3]

b) State Schwarz theorem.

If
$$f(x, y) = xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), x \neq 0, y \neq 0$$

= 0, $x = 0, y = 0$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

8. Answer **any one** question :

a) If
$$f(x, y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}, xy \neq 0$$

= 0, $xy = 0$

prove that the repeated limits do not exist at the origin. Also, show analytically that the double limit of f(x,y) exists at the origin. [1+3]

b) If $\phi(cx - az, cy - bz) = 0$, using Chain Rule, show that ap + bq = c, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. [4]

[1+4]

[4]

[1+3]